
BRIEF OF THE SCIENTIFIC ADVISORY BOARD ON:

SYNTHETIC BIOLOGY
WHAT IS SYNTHETIC BIOLOGY? WHY IT MATTERS?

Synthetic biology invol-
ves targeted enginee-

ring of genetic materials of 
organisms and biological 
systems to give them new 
characteristics and purpo-
ses.1  It includes the tech-
niques of DNA sequencing, 
genome editing, and the 
use of DNA in computers 
(“biocomputing”).2  While 
synthetic biology has been 
in use for decades, recent 
breakthroughs in nucleic 

Advances in synthetic 
biology are rapidly 

transforming a range of 
sectors, with increasingly 
global implications in the 
fields of health, security, 
environment, and human 
rights.

DISCLAIMER: The views expressed in this brief do not necessarily reflect those of the United Nations, its affiliated agencies and programmes, or the 
scientific community writ large, but rather reflect the independent assessment of the authors.

acid synthesis, gene editing and convergence with AI are dramatically expanding potential 
applications in the fields of health, environment, agriculture, manufacturing, and computing.3  
Our rapidly growing ability to design and synthetically construct viruses and microorganisms 
opens up new avenues for studying life and delivering new benefits to humanity.4 

WHAT ARE THE LATEST DEVELOPMENTS?

 • MEDICINE: DNA sequencing and synthesis was instrumental in the design and production 
of some COVID-19 vaccines. It has also been used to develop effective therapies for some 
forms of cancer.5  Today, hundreds of medical start-ups are applying synthetic biology to 
cure diseases, develop vaccines, and improve diagnoses.6  In early 2023, for example, the 
first CRISPR-based gene-editing treatment for sickle-cell disease was approved by the U.S. 
Food and Drug Administration (FDA).7  The coming period is likely to see many more medical 
breakthroughs, including for neurological and metabolic diseases. Investments in DNA nano-
technologies for medical use are expected to reach $26 billion by 2031.8 

 • ENVIRONMENT AND MANUFACTURING: In 2024, artificial photosynthetic systems offe-
red hope for new solar-to-fuel energy conversion.9  Engineered textiles, dyes, and cosmetics 
are already transforming parts of the fashion industry.10  Synthetic biology is being marketed 
as a method of “bioremediation” for making or digesting plastics in a carbon-negative man-
ner.11  Eco-engineered living organisms will consume large quantities of microplastics and 
other pollutants in our oceans and soil in the near future, with huge impacts on the manufac-
turing industry.12  

 • AGRICULTURE: The use of genetic modifications for improved food production is well-
known and widespread. Recently, cellular agriculture generated products like cheese, meat, 
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and other proteins without the use of live animals.13  Break-
throughs involving improved nutritional quality and more re-
silient crops suggest a high potential for large-scale impro-
vements in food security and sustainable agriculture.14 “Gene 
drives” that alter the inheritable characteristics of  plants and 
animals are increasingly used to eradicate pests and develop 
more resilient crops.15  As a result, ecosystem-level changes 
are witnessing the creation of “synthetic microbial communi-
ties” that may be more productive and resilient than naturally 
occurring ones.16 

WHAT ARE THE POTENTIAL RISKS?

Synthetic biology poses significant potential environmen-
tal and food security risks related to the unintended re-

lease of genetically modified organisms or the pollution of 
gene pools of domesticated or wild species. Genetic mod-
ifications may spread into the wild, contaminating or com-
peting with populations, disrupting ecosystems, and causing 
biodiversity loss and environmental deterioration.20  New or 
modified species can upset nutrient balances in soil and wa-
ter, alter microbial communities, and interfere with a range of 
natural evolutionary processes, potentially destroying entire 
food systems.21  Many agricultural communities have ex-
pressed concern that industries are already overly reliant on 
GMO crops, consolidating power in a few companies hold-
ing proprietary rights, decreasing food security, increasing 
socio-economic inequality, and reducing biodiversity.22  Syn-
thetic biology could accelerate these trends, but in many cas-
es the potential effects are not yet well-known.

The dual-use potential for synthetic biology products as 
weapons is a growing concern, especially as technologies 
become more readily available.23  While worst-case scenari-
os involving global deployment of deadly pathogens are un-
likely in the short-term,24  the rapid acceleration of biological 
technologies highlights the need for a better understand-
ing of security risks, along with forums to deconflict and 
de-escalate.25  Beyond the security realm, the public health 
implications of an unintentional release of new pathogens 
– including the unlikely possibility of a new pandemic – high-
lights the need for proactive health measures.26 

A range of social and ethical concerns also have been 
raised.27  Given the concentration of technological expertise 
in the Global North, the benefits of synthetic biology are like-
ly to accrue to wealthier countries. The unauthorized use of 
biological information from developing countries – called 
“biopiracy” – can directly undermine the rights of Indigenous 
populations in particular.28  And more generally, synthetic bi-
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ology raises questions about the right of humans to interfere 
in naturally-occurring ecosystems that have evolved over 
millions of years.29  

Many of these risks point to the inherent uncertainty of 
synthetic biology. While described in the language of engi-
neering, the practice involves the manipulation of living cells, 
which may mutate or evolve within our environment and 
our bodies. This means that many of the alterations made 
to DNA or other living material cannot be controlled fully by 
synthetic biologists, while the impacts of introducing new or-
ganisms into the world are impossible to predict and difficult 
to regulate with typical slow-moving processes. At the same 
time, recent advancements in computational algorithms and 
artificial intelligence are significantly improving our ability to 
model these systems with increasing degrees of precision, 
allowing us to better weigh benefits and risks together.30 

 • COMPUTING: The field of “biocomputing” includes the use 
of synthetic DNA to create systems capable of handling large 
volumes of data more efficiently than traditional silicon-ba-
sed microprocessors.17 Examples include CRISPR systems 
for storing data in living cells; direct encoding of data in DNA 
strands; and the creation of “living computers” that can sen-
se and respond to their environments.18  While not yet on the 
market, the development of synthetic neural networks could 
offer massive increases in computing power by mimicking 
the efficiency and parallel processing capabilities of the hu-
man brain.19 

The many applications of genome editing



WHAT ARE THE IMPLICATIONS?

Synthetic biology offers a potentially transformative set 
of technologies that could drive sustainable agriculture 

and energy, eradicate global diseases, and accelerate pro-
gress on some of our most important global goals. In some 
scenarios, our ability to meet the sustainable development 
goals may hinge largely on the kind of leap forward offered 
by synthetic biology.31  At the same time, the risks are now 
clearly reaching a global level, with potential cascade effects 
for every human on the planet.

Recognizing these profound risks, many countries have 
enacted targeted legislation on biosafety standards.32  While 
regulations may manage the specific risks within a national 
context, they do not cover the harms that synthetic biology 
may cause globally, are limited by the uncertainties inherent 
in synthetic biology, and could limit innovations. Existing in-
ternational frameworks may not be fully equipped to address 

the evolving risks. The 2003 Cartagena Protocol on Biosa-
fety to the Convention on Biological Diversity provides gui-
dance on the transboundary movement of living modified 
organisms, rather than on synthetic biology practices. The 
Biological Weapons Convention does include important 
prohibitions on the weaponization of biological processes, 
but further development may be needed to effectively ma-
nage the complexities of modern synthetic biology.33  Most 
directly, the Conference of the Parties to the Convention on 
Biological Diversity has created a working group to consider 
the effects of synthetic biology, but has yet to develop any 
form of regulation or guidance.34  As such, these are unlikely 
to address the kinds of risks that emanate from unintentio-
nal release of biological materials into the environment, new 
and emerging capabilities, or the broader consequences of 
manipulating genetic material in the longer-term.
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• AN INTERNATIONAL SYSTEMATIC RISK ASSESS-
MENT.35  While there have been a wide variety of nationally 
and regionally-based risk assessments, the potential global 
impact points to the need for an international one.36  Such 
an assessment would evaluate the wide range of potential 
impacts, including in public health, ecosystems, agriculture, 
military application, and computing. An inclusive and multi-
disciplinary assessment should include information about 
the social and developmental risks of growing inequalities 
caused by concentrations of biotech in the Global North.37  It 
should also be balanced, offering an evidence-based assess-
ment of the many benefits offered by synthetic biology, how 
advances in technology could mitigate risks, and options to 
harness its full potential. 

• ETHICAL GUIDELINES. Global regulation of synthetic bio-
logy via treaty or other binding agreement is unlikely in the 
short term. Building on existing efforts by the Convention on 
Biological Diversity, there is a pressing need for an inclusive 
international process to develop ethical guidelines as a basis 
of good practice today, and more enforceable regulations in 
the future. Such guidelines should cover the areas of biosafe-
ty, biosecurity, data privacy, environmental protection, public 
health, social justice and equity, access and transparency, 
and responsibility/accountability.38 

• TECHNOLOGY INVESTMENTS IN THE GLOBAL SOU-
TH. In 2007, sequencing a human genome cost roughly $10 
million. Today the same process costs around $800. The use 

WHAT ARE THE CONSIDERATIONS?

of synthetic genomes is set to bring prices down even further, 
while computational biology offers enormous potential for 
low-cost, high-impact research in the Global South. Yet the 
overwhelming bulk of synthetic biology research is conduc-
ted in a small number of wealthy countries, with the medical 
benefits flowing to a small minority. As demonstrated by the 
unequal rollout of the COVID-19 vaccines, failure to account 
for the Global South can have devastating consequences. 
We need greater involvement of Global South scientists in all 
phases of the “design-build-test-learn” process for synthetic 
biology.39  Indeed, as the cost of establishing manufacturing 
facilities decreases, bio-foundries could be established in 
emerging economies.

• INCLUSION OF SYNTHETIC BIOLOGY WITHIN AI GO-
VERNANCE. AI convergence with synthetic biology promi-
ses to dramatically accelerate progress, including the esta-
blishment of “self-driving” labs run entirely by autonomous AI 
systems. This convergence could create risks that outpace 
current regulatory frameworks, both on the AI and biological 
sides.40  While promoting the safe development of synthetic 
biology within the biological realm, it is crucial that national, 
regional, and international AI governance focuses on this 
convergence, looking to address risks within AI regulation as 
well.
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